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Abstract 

The formalism and First- and second-order approximations for a perturbation-theoretical 
treatment of the time-dependent solutions of the Schr0dinger equation are discussed in the 
context of possible applications to hydrogen-bonded systems. Equations are proposed that 
can help to model the essential features of such systems. 

The treatment of tunnelling in a double-minimum system, e.g. a hydrogen bridge, 
interacting with an environment is an important problem [1-3]. The transfer of a proton 
initially localized in one of the two wells of the system may be involved in biochemical 
processes of many kinds [4,5]. So far, an explicit analysis of the temporal aspects of the 
transfer problem has been missing; although the fundamental quantum mechanical 
concepts are well known, treatments susceptible to application are fairly recent [1,6,7]. 
In this paper, we propose a perturbational analysis of the same problem, leading to a 
decomposition of Born transfer probabilities into contributions susceptible to different 
interpretations. 

We start from a localized description derived as follows. Let the total Hamilton- 
ian operator be 

H =  T +  VL+ V g + VLR +Hext+ V im . (1) 

The physics of the problem is contained in the four potential-energy terms (T being the 
usual kinetic energy operator) and in H ext. The potential energies V L, V R may be thought 
of as two single minimum one-dimensional profiles (parabolas, Morse curves, etc.); VLg 
represents a correction term transforming them into a continuous double-weU profile; 
H ext is the Hamittonian operator associated to the degrees of freedom not directly 
involved in the transfer and to the environment; V im is the interaction between the 
transfer mode and all other degrees of freedom. 
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The two local Hamiltonians T + V L and T + V R define a subspace spanned by 
sets I ZL), I ZR) of (mutually orthogonal) states localized on the left-hand minimum or the 
right-hand minimum of the given system. A general state I k(t)) can then be expanded as 

I k(t)) = I ZL ) Lk + I ZR) gk (2) 

in terms of time-dependent column vectors L k and R r The composite vector 
L + C~ = ( ~, R~) obeys the usual Schr0dinger equation of motion: 

dCk /d t=- iHCj : ;  C k = Rk " (3) 

Partitioning of the Hamiltonian matrix 

H = HLL HLR (4) 
HRL HRR 

enables one, in analogy to the procedure of Adelmann and Doll [8] and McDowell [9], 
to derive with the help of Laplace transforms from eq. (3) an equation of motion for L k, 

l 

Lk --- --iHLLLk + I d t ' M ( t -  t')Lk + Bk (t), (5) 
0 

with 

M(t) =--HLR exp(-iHRRt)HRL(O), (6) 

Bk ( t )  = --iHLR exp(-iHRRt)Rk (0), (7) 

where the index k points to the fact that the state under study is Ik(t)), which was 
initially I k(0)) = I k). The probability for the particle to move from the right- to the left- 
hand side is then 

WRL= ~ LmkpkkLmk = ~_~ (L;Lt )pkk ,  (8) 

where k now refers in particular to a state initially localized on the right-hand side, and 
Lm~ denotes the mth element of the vector L k. The p,u's are the statistical weights of the 
initial states. The time evolution of WRL is, therefore, essentially determined by L2L k, 
and WRL obeys the following equation of motion 
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I/VRL = E(L;Lk + L~Lk )Pkk = E [ i L ~ ( t ) H L L L k ( t )  
k k 

t 

+ I d t ' L ~ ( t ' ) M + ( t -  t ' )L k (t) + B~(t)Lk (t) - iL~(t)HLLL k (t) 
0 

t 

~- I d t ' L ~ ( t ' ) M ( t -  t')L/c (t) + L'~(t)B~: (t)lPkk. 
0 

(9) 

The problem of partitioning the equations of motion can also be approached in 
a more formal way. From eqs. (3) and (4), we derive 

Lk (t) = exp ( - iH t )  Lk(0) 
R k (t) R k (0) ' 

(10) 

i.e° 

Lk (t) = [exp (--iHt)]LLLk (0) + [exp(--iHt)]LR Rk (0), (1 la) 

R k (t) = [exp ( - iHt)]RLLk (0) + [exp (--iHt)]RR Rk (0). ( l l b )  

This is a formal solution for Ck(t), but requires calculation of the complete 
exponential matrix before taking its (LR)- and (LL)-blocks. Calculation of the (LR)- 
block can be avoided by the formal solution obtained via Laplace transforms [4]. This 
shows that 

l 

[(e-iH(t - t ') )LLH LR e-iHr~t 'dt'. (12) (exp ( - i l l  t))LR 
0 

However, the calculation of the (LL)-block still requires that the exponential of the 
whole matrix should be evaluated. An alternative procedure may be to solve the two 
differential equations separately (as inhomogeneous equations): 

[,k = -iHLLLk - iHLR Rk, (13a) 

/~k = - iHRLLk - iHRRRk- (13b) 

The formal solutions are, as can be easily shown: 

t 

Lk ( t) = e-iHLLtLk (O) -- i f e--itlLL (t--t ')HLR R k ( t') dt', 
o 

(14a) 

l 

R k (t) = e-iHm~tRk (0) -- i !e- iH~(t - t  3HRLL k (t') dt'. (14b) 
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This yields a recursive equation for Lk: 

l 

L~ (t) = e-inLLtLk (0) -- ire -iHee (t - t  ")HER e -i//~t 'dt'Rk (0) 
0 

l l '  

- fe  -inLL ( ' - '  3HER f e -inpa(' '- ' ")HRLL k (t") dt'dt". 
0 0 

(15) 

Laplace transformation yields 

Lk (s) = (sl+ iHLL)-ILk (0) -- i(sI+ iHLL)-IHLR (sl+ iHRR)-IRk (0) 

- (sI+ iHLL)-IHLR(SI+ iHRR)-IHRLLk (S), (16) 

which can be solved for /~(s): 

Lk(s) 

= [(sl+ iHLL) + HLR(Sl + iHgg)] -1 [Lk (0) - iHLR(SI+ iHgg)-lRk (0)]. (17) 

If Lk(0 ) = 0 (initial condition that the system is initially localized on the fight-hand side) 
then: 

L (s) 

= [(sl+ iHLL) + HLR(SI+ iHRR)-IHRL]-I(--i)HLR(SI+ iHRR)-IRk (0). (18) 

(This result would, of course, also have been obtained had eqs. (1 la,b) been Laplace 
transformed and solved for ~,k(s).) 

Let us introduce the notation 

sI + iHt& HER 
M =  HRL sI+iHRR = W V+" (19) 

Then 

l-k (s) = - i [W + V+U-1V ] - 1  V+U-aRk (0). (20) 

As a check for this result, one can assume all four blocks of M to be diagonal (this 
would describe a set of two-level systems). Naming e L and e R the diagonal elements 

m m 
of riLL and HRR, respectively, and V the diagonal elements of V, eq. (20) gives, for the 
ruth element of Lk: 
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v* v ;  
/ , . , k  ( t )  = - i Ur,,W~ +lVmlZR, .k(O)=-- i (s+ie~)(s+ie~)+lV, , , l zR, .k(O) .  (21) 

Taking the inverse transform yields (by partial fraction decomposition) 

with 

Link(t) = iV~nRmk(O) e-iZmtsinf2mt, (22) 
D.m 

n m =  ~/a~ +lWml 2, Zm - - - ,  A , , , -  (23) 
2 2 

In the general case of noncommuting matrices, it is possible to proceed along the 
same lines by partitioning V into a diagonal part V ° proportional to the unit matrix and 
a perturbation V', and bringing eq. (20) to a form similar to eq. (21): 

with 

Lk (s) = - i [ U W  + V+V] -I ~'+Rk (0), 

= V ° + U-I+V'U +. 

(24) 

(25) 

The results of eq. (20) can now be applied by introducing a new matrix Y, 

i.e. 

Y = V + V - V ° * V  °, 

Y = V ° + V t + U - I + v ' + u - I + v  

(26) 

(27) 

and 

( ) u. u,.,. v.,. + ~ u , . , v . vr , . .  (28) 
Y,.n = V,.m + Unn r~m.,. 

(In some cases, it may be possible to extract an s-independent diagonal term from Y and 
add it to the first term.) Note now that U and W can be assumed to be diagonal without 
any loss of generality, because they represent the Hamiltonian matrices associated to the 
left-hand and right-hand states, respectively. Then, using the first-order binomial expan- 
sion (1 + x) -1 =_ 1 - x, we can write: 

+ 1 ~ Lk(s)  = - i [ U W  +V ° V°] - FRk(O), (29) 

with 
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= [ I -  Y(UW + V°÷V°)-I ]~  '+ 

= [ I -  (V°÷V'+ U - I + v ' + u + v ) ( u w  + V°+V°)- I ]~  ,'+. (30) 

The elements of the inverse transform will be 

Lm~ (t) = ~ f f m  ( t -  t')Fmn (t')dt'Rnk (0), 
n 

where F,~(t') is the inverse Laplace transform of  2~n(s) and 

(31) 

ie-iZ,, t 
f,, (t) - - -  sin (f2m t), (32) 

f2~ 

with Z and f 2  as defined in eq. (23). (Note that the strong-coupling limit consists of  
taking only n = m in eq. (31).) The evaluation of the matrix elements o f /~  to first order 
in V yields 

U m  ?'tl 
Finn (s) = S,.~. Vm. + (1 - 6ran) .--7-- Vmn 

Vn,, 

_ s+ie~  
= ¢5,,,,,V,,,, + ( 1 - 6 m , , ) ~ V , , , . .  

The inverse transform is 

(33) 

Finn (t) = ~5mn Vnn S(t) + (1 -- 3rnn ) Vmn (6(0 + i(e R - eft) x e -ieRt) 

= Vmn6(t)+ (1 - Smn)Vran(eRm - enR)e -ieRt. (34) 

Then, from eq. (31), 

Link (t) = Z fro (t)VmnRnk (0) + ~ [ ( 1  - 8mn ) Vmn i(em R - en R) 
n n 

l 

× ~fm ( t -  t')e-ie"R~'dt'Rnk (0)]. (35) 
0 

The solution of the integral yields: 

Link (t) = Amk fm (t) + ~ D(k)Rnk (0), 
n ¢ r n  

with 

(36) 
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V,,,,, (emR - e R) F e-ie#t - e-i(s:"- n,,)t e-ie,Rt -_ e-i(r.,. + n.)t 1 

Di 2= L - 4 - z - ; - h - - 2  j (38) 

The first term describes a two-level system modulated by a factor depending on the 
instantaneous coupling of I m) to the other states, and the second term contains the 
corrections to the approximation. 

Let us consider explicitly the dependence of L k on the initial condition, which is 
expressed by the subscript k. In particular, let 

L r~(0) = 0, R ~  = 6r~. (39) 

Then, 

Lm~(t) = V,,,kf,,~(t)+ D~kk)(1 -- 8ink). (40) 

The transition probability of eq. (8) can now be written: 

WRL = Z Pk IVmk 12 bern (012 
m,k 

+ Z Pk(V~kf*(t)D(~ )(t)+ Vmkfm(t)D(~ )(t)) 
m,k 
m~k 

+ ~ Pk ID(~) ( t ) l  2 • (41) 
m,k 

m g:k 

Equations (40) and (41) only take into account the effect of direct (forward) 
coupling of initial states Ik) to each given final state Ira). This limitation to direct 
coupling is clue to the truncation to first order in V' in eq. (33). 

The "feedback" effect, which amounts to the dependence of the probability of 
finding Im) at time t in Ik(t)), which was initially Ik), on the coupling of Ira) to initial 
states In) other than Ik) requires a second-order treatment. With Z = (UW + V°+V) -1, the 
elements of F can be written (again assuming U and W to be diagonal by the choice of 
the basis functions): 

Fm,~ = (1- Zm____m_m Z UrrlVrml=)T/.,~ 
Umm ~'~m 

[ uoo u.] 
+ E (Vmm "1- Vac ~)xvamZao:Vctm Uctctj 

a * k L  Umm 

- Z 
ct¢~n) Umm Uaa 

r*(m, iO 

( 4 2 )  
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Truncation to second order in V' yields 

Finn  ~ ~ZnFn -- Zmm ~, U~rlW~12Wr~mS~m 
Umm g*m 

- Z 177--- mm Vaa VamZaaV~a. (43) 
a(~n) \ t.l o~o~ Umm ) 

From this expression, it is evident that the coupling of Ira) to initial states let) and IY) 
other than [k) is now taken into account. 

Insertion of eq. (43) into eqs. (29) and (31) provides the expression of the 
probability taking into account "feedback" effects. An assessment of the scope of this 
second-order expansion can only be obtained by ad hoc numerical tests which may 
involve some approximations. Work along these lines is in progress, with application 
to the formarnide dimer in particular. 
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